Inclusion of CoolRoofs in Nonresidential Title 24 Prescriptive Requirem ents

Hashem Akbari
Heat Island Group Leader
Lawrence Berkeley National Laboratory

telephone: 510/486-4287

e-mail:H_Akbari@ LBL.gov

website: http://HeatIslandLBL.gov

May 30,2002 Sacram ento, CA

Scope of Proposed Title-24 Change

- → Modifies treatmentofcoolmoofs in California's

 Title-24 standards for non-residential buildings
 - current: com pliance option only; no prescriptive requirem ent
 - proposed: adds prescriptive requirem entfor bw-sbped roofs
- + Prescriptive requirem ents would not change for
 - non-residential buildings with high-sbped roofs
 - high-rise residential buildings
 - bw-rise residential buildings
 - guestroom s in hotel/m otelbuildings

CoolRoofBenefits

- → Roofs stay coolin sun if they have
 - high therm alem ittance and high solar reflectance
 OR
 - bw therm alem ittance and exceptionally high solar reflectance
- ♦ Coolroofs can reduce
 - building cooling electricity use
 - peak powerdem and
 - am bientair tem perature

Environm ental Im pact

♦ Benefits

- increased hum an com fort
- sbwed sm og form ation
- m itigation of urban heat is lands in sum m er
- decreased waste from disposalof roofs

♦ Penalties

- slightly higherwintertime heating energy use
- degraded wintertine urban air quality
- possible use of water and detergents to clean roofs

CoolRoofs in Existing Title 24 Code

- ♦ Prescriptive requirem ent...... no
- ♦ 0 verallenvebpe approach...... yes
 - heatgain equation incorporates solar reflectance
- → Perform ance-based complance.... .. yes
 - Residential and Nonresidential Alternative Calculation
 Method
- ♦ Coolroofing products defined yes
 - clay and concrete tiles: reflectance ≥ 0.40, em ittance ≥ 0.75
 - other roofing products: reflectance ≥ 0.70, em ittance ≥ 0.75

Code Change Proposal

- + Prescriptive Requirem ents
 - adds requirem entfornon-residential buildings
 with bw-sbped roofs
- ♦ O verallEnvebpe and Perform ance Approach
 - allows compliance credits or penalties
- ♦ Changes requirem ents for cool roofing products
 - qualifies bw-em ittance products with very high reflectance
 - restricts m oderate-reflectance clay and concrete tiles
 to bw-rise residentialbuildings

M ethodology

- → Review measure availability and cost
 - technologies, marketshare
 - manufacturers, distribution
 - availability, cost
 - usefullife
- → Perform building cost/benefit analysis
 - evaluate m easured energy savings
 - use DOE-21E to simulate cooling and heating energy use
 - netsavings = cooling savings heating penalty
- ♦ Project state wide savings based on non-residential new construction database

CoolRoofing ProductOptions

Roofing Product	CoolVariety
ballasted BUR	use white gravel
BUR with sm ooth asphalt coating	use cem entitious orotherwhite coatings
BUR with alum inum coating	use cem entitious orotherwhite coatings
single-plym em brane (EPDM,TPO,CSPE,PVC)	choose a white color
m odified bitum en (SBS,APP)	use a white coating over the mineral surface
m etalmofing (both painted and unpainted)	use a white or cool colorpaint
roof coatings (dark color, asphalt base)	use a white or cool color coating
concrete tile	use a white or coolcolor
cem ent tile (unpainted)	use a white or coolcolor
red clay tile	use coolred tiles

15-Y earN etPresentValue of Savings (\$/1000 ft²)

Projected Annual Statewide Savings

→ Increase in NR roofarea	. $72 \text{ M } \text{ft}^2$
→ Increase in bw-sbped NR roofarea	$46 \text{ M} \text{ ft}^2$
♦ Electricity savings	15.8 GW h
♦ Naturalgas deficit	202 kthems
♦ Source energy savings	141 GBTU
→ Peak powerdem and savings	10.0 M W
→ TDV NPV savings	\$24.6M
♦ non-TDV NPV savings	. \$20.1M

Sections of Standards To Be Modified

- → Section 101 Definitions And Rules Of Construction
- ◆ Section 118(f) M and atory R equirem ents for CoolRoofs
- ◆ Section 143(a) Envelope ComponentApproach
 - initialem ittance $\varepsilon \ge 0.75$, reflectance ≥ 0.70
 - initialem ittance ε < 0.75, reflectance ≥ 0.70 + 0.34 × (0.75 - ε)
- → Section 143(b) O verall Envelope Approach
 - Standard Heat Gain Equation
 - Proposed HeatGain Equation
- ♦ Section 149 (b) Alterations To Existing Buildings
- → Alternative Calculation Manual (ACM)
 - 2.2.1.4 Absorptance: Proposed Design, Reference Design
 - 2.2.1.5 Surface Em issivity ThermalEm ittance
 - 4.3.2.6 Absorptance and Emittance

CoolRoofs in Existing Title 24 Code (Emergency Regulations of January 3, 2001)

- → Prescriptive requirem ent..... no
- ♦ 0 verallenvebpe approach..... yes
 - heatgain equation incorporates roofsolar absortance (1 reflectance)
 - coolroofabsorptance = 0.45, standard roofabsorptance = 0.70
- → Perform ance-based com plance..... yes
 - Residential and Nonresidential Alternative Calculation Method (ACM) Approval Manual for performance-based compliance assigns reduced solar absorptance to cool roofs
- ♦ Coolroofing products defined yes
 - Section 118(f) sets initialsolar reflectance and them alem ittance requirements for coolroofs
 - coolchy and concrete tiles: reflectance ≥ 0.40, em ittance ≥ 0.75
 - allother coolroofing products: reflectance ≥ 0.70 , em ittance ≥ 0.75

Costprem ium s for cool varieties of com m on low -sloped roofing products

Roofing Product	Cool Variety	Cost Premium (\$/ft²)
ballasted BUR	use white gravel	up to 0.05
BUR with smooth asphalt coating	use cementitious or other white coatings	0.10 to 0.20
BUR with aluminum coating	use cementitious or other white coatings	0.10 to 0.20
single-ply membrane (EPDM, TPO, CSPE, PVC)	choose a white color	0.00 to 0.05
modified bitumen (SBS, APP)	use a white coating over the mineral surface	up to 0.05
metal roofing (both painted and unpainted)	use a white or cool color paint	0.00 to 0.05
roof coatings (dark color, asphalt base)	use a white or cool color coating	0.00 to 0.10
concrete tile	use a white or cool color	0.00 to 0.05
cement tile (unpainted)	use a white or cool color	0.05
red clay tile	use cool red tiles	0.10

A verage Simulated Savings (Per 1000 ft² of Roof Area)

\	Annualelectricity savingskW h/1000 ft ²	316
	- range 117 to 438 kW h/1000 ft^2	
+	Annualnaturalgas deficit	5.0 therm $s/1000~\mathrm{ft}^2$
	- range 1.8 to 10.7 therm $s/1000~\mathrm{fl}^2$	
\	Annualsource energy savings MBTU/1000 ft ²	
	- range 0.13 to 4.3 MBTU/ 1000 ft ²	
+	Peak powerdem and savingskW /1000 ft ²	0.21

- range 0.15 to 0.27 kW /1000 ft²

 15-yearnetpresentvalue (NPV) savings
- - range 115 to 694 \$/1000 ft²
 - 15 **wear NPX sayings without TDV**

A cknow ledgem ents

→ Funding

- Pacific G as and E lectric C om pany (PG & E) [through California Institute for Energy Efficiency (C IEE)]

♦ Guidance

- MistiBruceri, Patrick Eilert, Gary Fernstrom & Peter Tumbullof PG&E
- Charles E by of E by Associates
- BillPennington, Bryan Alcom & Elaine Hebert of the California Energy Commission (CEC)
- Jon McHugh of the Heschong Mahone Group
- Jeffrey Johnson of the New Buildings Institute
- RogerWright& Ramona PeetofRLW Analytics

♦ Authors

- Ronnen Levinson, Hashem Akbari & Steve Konopacki of Lawrence Berkeley National Laboratory (LBNL)

Cooloptions for low-sloped roofs

Noncool Roof Options			Cool Roof Options				
of Type	Reflectance	Emittance	Cost (\$/ft²)	Roof Type	Reflectance	Emittance	Cost (\$/ft²)
It-up Roof			1.2 – 2.1	Built-up Roof			1.2 – 2.15
ı dark gravel	0.08 - 0.15	0.80 - 0.90		with white gravel	0.30 - 0.50	0.80 - 0.90	
smooth asphalt ace	0.04 - 0.05	0.85 – 0.95		with gravel and cementitious coating	0.50 - 0.70	0.80 - 0.90	
aluminum coating	0.25 - 0.60	0.20 - 0.50		smooth surface with white roof coating	0.75 – 0.85	0.85 – 0.95	
gle-Ply Membrane			1.0 – 2.0	Single-Ply Membrane			1.0 – 2.05
:k (EPDM, CPE, PE, PVC)	0.04 - 0.05	0.85 - 0.95		white (EPDM, CPE, CSPE, PVC)	0.70 – 0.78	0.85 - 0.95	
/ EPDM	0.15 - 0.20	0.85 - 0.95		,			
dified Bitumen			1.5 – 1.9	Modified Bitumen			1.5 – 1.95
n mineral surface sheet (SBS, APP)	0.10 – 0.20	0.85 – 0.95		white coating over a mineral surface (SBS, APP)	0.60 - 0.75	0.85 – 0.95	
al Roof			1.8 – 3.7	Metal Roof			1.8 – 3.75
ainted, corrugated	0.30 - 0.50	0.20 - 0.30		white painted	0.60 - 0.70	0.80 - 0.90	
<pre>c-painted, rugated</pre>	0.05 - 0.08	0.80 - 0.90					
halt Shingle			1.1 – 1.4	Asphalt Shingle			1.2 – 1.5
:k	0.04 - 0.05	0.80 - 0.90		white	0.25 - 0.27	0.80 - 0.90	
vn	0.05 - 0.09	0.80 - 0.90					
uid Applied ıting			0.5 – 0.7	Liquid Applied Coating			0.6 – 0.8
ooth black	0.04-0.05	0.85 - 0.95		smooth white	0.70 - 0.85	0.85 - 0.95	
				smooth off-white	0.40 - 0.60	0.85 - 0.95	
				rough white	0.50 - 0.60	0.85 - 0.95	
ncrete Tile			3 – 4	Concrete Tile			3 – 4
	0.10 - 0.12	0.85 - 0.90		white	0.65 - 0.75	0.85 - 0.90	
				with off-white coating	0.65 - 0.75	0.85 - 0.90	
y Tile	0.20 - 0.22	0.85 – 0.90	3 – 4	Clay Tile			3 – 4
nent Tile			3 – 4	Cement Tile			3 – 4
ainted	0.18 - 0.22	0.85 - 0.90		white	0.70 - 0.75	0.85 - 0.90	

Commercial-building low-sloped roofing technologies and market shares

		PACIFIC ^b		WESTERN ^c	
Technology	Cost ^a (\$/ft ²)	New Sales	Retrofit Sales	Sales	Area ^d
Built-up Roof (BUR)	1.7	46%	52%	31%	27%
Modified Bitumen	1.7	10%	15%	30%	26%
Single-Ply Membrane	1.5	18%	16%	23%	22%
Metal	2.7	2.2%	1.7%	5.2%	2.8%
Asphalt Shingle	1.3	5.8%	2.5%	3.6%	4.2%
Tile	3.5	2.5%	3.9%	0.3%	0.1%
Polyure-thane Foam (SPF)	0.7	0.4%	6.3%	2.5%	5.2%
Liquid Applied Coatings	0.4	3.2%	3.3%	2.5%	9.2%
Other	1			2.1%	3.1%

Life expectancies of roofm aterials

Roofing material	Life expectancy (yr)
wood shingles and shakes	15 to 30
tile ^a	50
slate ^b	50 to 100
sheet metal ^c	20 to 50+
BUR/asphalt ^d	12 to 25
BUR/coat and tard	12 to 30
single-ply modified bitumen	10 to 20
single-ply thermoplastic	10 to 20
single-ply thermoset	10 to 20
asphalt shingle	15 to 30

Daytim e-conditioned non-residential roof area and simulated savings

	Mft ² daytime-		annual energy		peak	TDV NPV	non-TDV NPV
Climate Zone	conditioned roof area/ Mft ² app	MWh/ Mft ² app	k therm/ Mft ² app	source MBTU/ Mft ² app	kW/ Mft ² app	k\$/ Mft ² app	k\$/ Mft ² app
1	0.001	0.1	-0.01	0.3	0.1	0.1	0.1
2	0.019	6.2	-0.1	51.5	4.3	9.4	7.6
3	0.041	8.1	-0.2	63.1	6.9	13.0	9.7
4	0.051	13.1	-0.2	111.0	9.8	20.4	16.2
5	0.006	1.1	-0.03	8.8	1.0	1.8	1.3
6	0.061	25.2	-0.3	233.0	15.0	39.2	32.7
7	0.036	11.9	-0.1	112.0	9.7	18.9	15.6
8	0.041	17.8	-0.2	166.2	11.0	28.2	23.2
9	0.041	17.3	-0.2	159.3	8.9	26.7	22.4
10	0.046	16.9	-0.2	155.7	8.9	26.2	21.9
11	0.010	2.8	-0.05	23.5	1.6	4.3	3.4
12	0.057	17.2	-0.3	145.8	12.0	26.6	21.4
13	0.019	7.2	-0.1	63.5	4.0	11.3	9.1
14	0.017	6.3	-0.1	56.8	3.8	9.7	8.1
15	0.010	4.1	-0.02	40.4	1.8	6.4	5.5
16	0.001	0.2	-0.01	1.3	0.2	0.3	0.2
total	0.457	155	-2.0	1392	99	242	198

Annual Electricity Savings (kW h/1000 ft²)

AnnualNaturalGasDeficit (therm s/1000 ft²)

Annual Source Energy Savings (MBTU/1000 ft2)

Peak E lectrical Dem and Reduction (kW /1000 ft²)

Section 143 – (a) Envelope Component Approach

For nonresidential buildings with bw-sloped roofs (except high-rise residential buildings and guest room sofhotel/m otel buildings), roofs that have an initial therm alem ittance not less than 0.75 shall have a minimum initial solar reflectance of 0.70. Low-sloped exterior roofs that have an initial therm alem ittance $\varepsilon_{\text{initial}}$ less than 0.75, including but not limited to those with metallic surfaces, shall have a minimum initial solar reflectance of $0.70+0.34(0.75-\varepsilon_{\text{initial}})$.

Section 143 - (b) O verall Envelope Approach: Standard HeatGain EQ.

$$+\sum_{i=1}^{nR} \left(WF_{Ri} \times A_{Ri} \times U_{Ri_{std}} \times \frac{\alpha_{Ri_{std}}}{\alpha_{Ri_{std}}} \left[1 - \left(0.2 + 0.7 \left[\rho_{Ri_{std}} - 0.2\right]\right)\right]\right) \times SF$$

= A standard roof absorptivity of 0.70 for the corresponding A_{Ri} = For low-sbped roofs on nonresidential buildings (excluding high-rise residential buildings and guest room s in hotel/m otel buildings), a standard initial roof reflectance of 0.70 for the corresponding A_{Ri} ; for other than low-sbped roofs on nonresidential buildings, for high rise residential buildings, and for guest room s in hotel/m otel buildings, a standard roof reflectance of 0.30 for the corresponding A_{Ri} .

Section 143 – (b) O verall Envelope Approach: Proposed

$$+\sum_{i=1}^{nR} \left(WF_{Ri} \times A_{Ri} \times U_{Ri_{prop}} \times \frac{\mathbf{A}_{Ri_{prop}}}{\mathbf{A}_{Ri_{prop}}} \left[1 - \left(0.2 + 0.7 \left[\rho_{Ri_{prop}} - 0.2\right]\right)\right]\right) \times SF$$

 $\alpha_{Rj_{prop}}$ = The applicable roofabsorptivity for the corresponding A_{Rj} . An absorptivity of 0.45 for cool roofs (as defined in Section 118). An absorptivity of 0.7 for all other roofs.

 $\rho_{Rj_{prop}} = \underline{\text{the proposed initial reflectance for the corresponding}}_{A_{Rj}}.\underline{\text{If no}}$ CRRC-certified value is available, the proposed reflectance will use the default value of 0.10 for low-sloped roofs on nonresidential buildings (excluding high-rise residential buildings and guest room s in hotel/m otelbuildings, for high-rise residential buildings, and for guest room s in hotel/m otelbuildings.

Proposed ACM Language 2214 Absorptance: Proposed Design

For nonresidential buildings with bw-sloped roofs, the proposed design must receive user input for initial absorptance (α_{init} ; absorptance = 1 - reflectance). The ACM must calculate the corresponding aged value α_{prop} from the following equation:

$$\alpha_{\text{prop}} = 0.8 + 0.7 (\alpha_{\text{init}} -0.8)$$

where $\underline{\alpha_{\text{init}}}$ is the initial absorptance of the product either as rated by the CRRC or one of the defaults specified below.

Proposed ACM Language 2214 Absorptance: Reference Design

For the reference m ethod for nonresidential buildings with low-sloped roofs (excluding high-rise residential buildings and guestroom s in hotel/m otelbuildings) the roof absorptance (1 - reflectance) shall be m odeled at 0.30 (reflectance 0.70). For the reference m ethod for nonresidential buildings with other than low-sloped roofs, for high-rise residential buildings, and for guestroom s in hotel/m otelbuildings, the roof absorptance shall be m odeled at 0.70 (reflectance 0.30).

The ACM must calculate the corresponding aged value $\underline{\alpha_{\rm ref}}$ from the following equation.

$$\alpha_{\text{ref}} = 0.8 + 0.7 (\alpha_{\text{std}} - 0.8)$$

where $\underline{\alpha_{\rm std}}$ is 0.30 for nonresidential buildings with bw-sloped roofs or 0.70 for other nonresidential buildings, high-rise residential buildings and guest room s in hotel/m otel buildings

